
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 1, JANUARY 2008 1

Efficient 2-D Grayscale Morphological
Transformations With Arbitrary

Flat Structuring Elements
Erik R. Urbach, Associate Member, IEEE, and Michael H. F. Wilkinson, Senior Member, IEEE

Abstract—An efficient algorithm is presented for the computa-
tion of grayscale morphological operations with arbitrary 2-D flat
structuring elements (S.E.). The required computing time is inde-
pendent of the image content and of the number of gray levels used.
It always outperforms the only existing comparable method, which
was proposed in the work by Van Droogenbroeck and Talbot, by a
factor between 3.5 and 35.1, depending on the image type and shape
of S.E. So far, filtering using multiple S.E.s is always done by per-
forming the operator for each size and shape of the S.E. separately.
With our method, filtering with multiple S.E.s can be performed by
a single operator for a slightly reduced computational cost per size
or shape, which makes this method more suitable for use in gran-
ulometries, dilation-erosion scale spaces, and template matching
using the hit-or-miss transform. The discussion focuses on erosions
and dilations, from which other transformations can be derived.

Index Terms—Dilation, dilation-erosion scale spaces, erosion,
fast algorithm, hit-or-miss transform, mathematical morphology,
multiscale analysis.

I. INTRODUCTION

MORPHOLOGICAL operators [2] like dilation and ero-
sion with structuring elements (S.E.) are the most funda-

mental operators in mathematical morphology and have become
common tools for both image filtering and analysis [3], [4] of bi-
nary and grayscale images, especially since the development of
efficient algorithms [5]–[14]. Usually, these efficient algorithms
can only be used for binary images [5]–[7], [9], [12], [13], or
they are limited to shapes that can (efficiently) be decomposed
into a series of linear S.E.s [8], [11], [14]. Efficient implemen-
tations for specialized hardware have also been studied exten-
sively, such as the decomposition of arbitrary shapes into 3 3
blocks [10]. A recent overview of efficient algorithms for mor-
phological operators with linear S.E. and 2-D S.E. decomposi-
tions can be found in [15]. All methods based on decomposition
of 2-D S.E.s into linear S.E.s share the same limitation: many
shapes either cannot be decomposed efficiently or they cannot
be decomposed at all. In the binary case, efficient algorithms
for some 2-D shapes like circles do exist, but these cannot effi-
ciently be extended to the grayscale case, for which polygonal
approximations [11], [16] of circles usually are used instead. For
larger circles these approximations tend be either too coarse or

Manuscript received January 16, 2007; revised October 2, 2007. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Philippe Salembier.

The authors are with the Institute of Mathematics and Computing Science,
University of Groningen, 9700 AV, Groningen, The Netherlands.

Digital Object Identifier 10.1109/TIP.2007.912582

too computationally intensive, since the number or linear S.E.s
required is proportional to the diameter of the circle.

Algorithms that efficiently perform morphological operators
with arbitrary S.E.s not only are important for those cases where
the S.E. cannot be decomposed, but also wherever a generic al-
gorithm is desired such as in image processing libraries, which
often have a number of specialized routines for specific cases,
and a direct implementation for arbitrary S.E. Furthermore, for
many applications the benefits of using the fastest specialized
algorithm available instead of using one slightly less efficient
generic algorithm does not outweigh the costs involved in
adapting the methods used. S.E. shape decompositions require
some design and programming efforts that can be avoided if
a generic algorithm is used. Our algorithm is efficient for any
S.E. and only significantly outperformed when large linear
S.E.s or compositions of linear S.E.s are used with a dedicated
algorithm such as proposed by Gil and Kimmel [14].

Commercial and open source image processing software for
performing morphological operations was found to be either
quite slow, being based on an processor optimized version of
the direct algorithm (like openCV or Matlab) or fast but limited
to rectangular S.E.s (like Adobe Photoshop CS2). Olena [17],
which uses the algorithm by Van Droogenbroeck and Talbot [1],
is one of the few exceptions that is faster and can handle arbitrary
S.E.s. Van Droogenbroeck and Talbot [1] proposed an efficient
algorithm for computing morphological operations with arbi-
trary 2-D shapes using a histogram, which makes the computing
time of their algorithm dependent on the number of gray levels
used. Their idea is to compute for one pixel of the image the
complete histogram based on the intensities of the pixels around

corresponding to elements of the S.E. The value of after
erosion is the minimum intensity in the histogram which has a
value 0. For all succeeding pixels of the image (by moving
around the S.E. over the image), the histogram is efficiently
updated and the position of its minimum intensity changes only
if i) a new minimum value is shifted into the histogram, which
can be kept track when the histogram is updated, or ii) when
the current minimum is shifted out of the histogram, in which
case the algorithm searches for the first following (brighter)
intensity which is now represented in the histogram.

The C source code of the following algorithms are available
on request: i) our proposed (“Urbach-Wilkinson” or UW) algo-
rithm, ii) Van Droogenbroeck and Talbot (DT) [1] for arbitrary
2-D S.E.s, and iii) Gil and Kimmel (GK) for linear S.E.s.

In a preliminary version [18], we presented a new method for
performing morphological operators with any 2-D flat struc-
turing element that always outperforms existing algorithms for

1057-7149/$25.00 © 2007 IEEE

2 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 1, JANUARY 2008

Fig. 1. Decomposition of S.E. B into chords.

arbitrary structuring elements, and which has two advantages:
i) it is independent of both image content and the number
of gray levels used, and ii) application of a single operator
using many different S.E.s can be computed somewhat more
efficiently, which may be useful for granulometries [2], [3] and
erosion-dilation scale spaces [19]. Compared to Van Droogen-
broeck and Talbot’s method, it has the further advantage that it
also works on floating point data, which is common for images
originating from a Fourier transformation, such as images in
radio astronomy [20]. This is also useful for generic implemen-
tation for any pixel type for which a total order exists [17].

This paper has the following improvements over the prelim-
inary version [18]: i) improvements of the algorithm resulting
in a further reduction of the number comparisons and, hence,
in speed gains of a factor between 2.0 and 7.7 compared with
the earlier version, especially for thin structuring elements, ii)
a more detailed and rewritten discussion of the algorithm, and
iii) the comparison with existing methods has been extended.

II. ALGORITHM

For the sake of simplicity and clarity, we limit our discussion
here to discrete 2-D grayscale images and erosions with 2-D
flat S.E.s . It should be noted that our method can be easily
adapted for 3-D images and other morphological operations. It
is assumed that all images have their origin top-left and that
images are processed in scan-line order.

Like existing methods, our approach to improve the compu-
tational efficiency of erosions is by reducing the number of re-
dundant comparisons performed by a direct implementation of
its definition

(1)

A. Data Structure

Much in the same way as in the binary case in [6], our algo-
rithm decomposes an arbitrary S.E. into a series of chords, i.e.,
runs of foreground pixels of maximum extent, as demonstrated
in Fig. 1 for a letter H. Each chord can be considered as a single
horizontal linear S.E. and is represented by a triple containing:
i) its -offset with respect to the origin of the S.E., (ii) its min-
imal -position, and iii) its length . For a S.E. consisting of

chords, we store the number of chords , the set of
chords, the minimum and maximum -offsets, and ,
the minimum and maximum -values and , and the
maximum chord length occurring in .

B. Computation

Let us consider the computation of the erosion with a flat S.E.
at coordinate of a 2-D grayscale image . Furthermore,

let be the set of chords representing . We can now compute
the minimum intensity value of the pixels for a chord

translated by , i.e., the minimum intensity of the
pixels of from to

(2)

Thus, the direct approach for computing an erosion
of (1) can now also be computed by

(3)

with being the set of chords representing . Algorithms based
on either (1) or (3) both have a computational complexity of

for a image and a S.E. consisting
of elements.

Our approach is to split the computation of the erosion
for each line of in two parts. First, a lookup table is com-

puted inwhich theminimumvalues foreachchord length is stored
for all the pixels belonging to a number of lines, thus basically
storing the .After this, theerosion iscomputedforeach
pixel of by taking the minimum of the computed values

(stored in lookup table) corresponding to the chords
of translated by . This will now be discussed in detail.

C. Lookup Table

Let us assume a image and a S.E. of height
. Furthermore, let be the maximum chord length

of the set of chords representing . Often, only a lim-
ited number of different chord lengths exists in a structuring el-
ement. Therefore, let us introduce an array storing for each
chord length index its corresponding chord length. For many
structuring elements, the maximum value of will be consider-
ably less than the number of the chord lengths present in .

Assume we are eroding line of image . This means that for
a S.E. with minimum -offset and maximum -offset

all lines of belonging to the
rectangle are needed.

The lookup table can now be defined for image
at line and offset as

(4)

Thus, stores the minimum intensity value of the
pixels belonging to the chord with length index that starts
at . Algorithm II.1 illustrates these computations.
Note that we avoided implementation issues like handling
the boundary of . In our implementation, we solved this by
padding the lookup table for and . Furthermore, it
is assumed that for each chord length a smaller chord
length is present such that . For
structuring elements that do not satisfy that criterion, we add
the necessary intermediate chord lengths to the computation of
the lookup table.

URBACH AND WILKINSON: EFFICIENT 2-D GRAYSCALE MORPHOLOGICAL TRANSFORMATIONS 3

A full computation of the lookup table is only necessary for
the first line of the image; for all following lines
the table is updated as follows:

if

if .
(5)

If we reuse the array of for the computation of
, then we perform two steps to accomplish (5): i) we

copy for each :
with the semicolons denoting here the copying of all elements
along that dimension and ii) the computation for the elements
belonging to . The copying step can be performed
efficiently by implementing the lookup table as a multidimen-
sional array so that this copying can be performed by swapping
of pointers. This computation step is a special and limited case
of the full computation as described in Algorithm II.1 in that we
only need to perform the outermost FOR-loop once, rather than

times.

Algorithm II.1 Algorithm for full computation of the lookup
table for line of image .

ComputeTable(, ,).

INPUTS: A image , minimum and maximum
-offsets and .

OUTPUT: A fully computed lookup table .

FOR TO DO.

FOR TO DO

.

FOR TO num DO.

FOR TO DO

.

D. Chord Representation

Constructing the set of chords representing a S.E. is straight-
forward: we scan all elements and record the the be-
ginning (-offset and -offset) and length of each run-length of
elements and add a chord to describing that run length.

In the preliminary version [18], for a S.E. with maximum
chord length a lookup table was computed storing the min-
imum values for the chord lengths with .
Thus, the minimum value for a chord translated to in
image is computed by taking the minimum of the two chords
that together cover chord .

The present algorithm computes the lookup table for the fol-
lowing chord lengths for a S.E. :

• all chord lengths present in ;
• those chord lengths that are necessary to meet the require-

ment that the minimum value for any chord length begin-
ning at can be computed using only one compar-

ison, i.e., if contains a chord of length than the lookup
table should also contain the minimum value for a chord of
length .

E. Performing the Erosion

For each line , we compute or update the lookup table
, after which we erode line of and store the

result in the output image . Eroding line using
is illustrated in Algorithm II.2. Algorithm II.3 shows how to
compute the erosion of an image using a S.E. .

Algorithm II.2 Algorithm for eroding line of an image
using lookup table and storing the result in

output image . Range of gray values for images and is
.

LineErode(, ,).

INPUTS: A output image , lookup table ,
and a set of chords .

FOREACH DO

.

FOR TO DO.

FOREACH

IF THEN .

Algorithm II.3 Algorithm efficient computation of erosion

UWErode(,).

INPUTS: A input image and a S.E. .

RESULT: Output image .

Construct set of chords representing .

Compute for (Algorithm II.1).

LineErode(, ,).

FOR TO DO

Update .

LineErode(, ,).

The total computation time required for performing an
erosion using our proposed algorithm depends strongly on
the number of chords. Since some S.E.s have considerably
fewer vertical run-lengths than horizontal ones, erosions using
those can be computed more efficiently if would be a list
of vertical chords. As the time needed to compute a chord
representation is negligible compared with the total time
needed, we compute both a horizontal and a vertical run-length
decomposition and use the decomposition with the minimum

4 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 1, JANUARY 2008

number of chords as the chord representation . The modified
chord table contains in entry the minimum
value for the chord starting at x-coordinate and table row
with chord length toward the previous image lines. Updating
or a full computation of this table is similar to case of horizontal
chords as described earlier. This avoids the need for costly
image rotation over 90 .

If the S.E. has the shape of a letter H of width and height 49
and with its legs 1 pixel thick, then using horizontal run-lengths
a set of , whereas using vertical run-
lengths the same S.E. is represented using only
chords. Experiments showed the same relative difference in the
required computation time.

F. Computational Complexity

It is obvious that the algorithm described here is independent
in its time complexity of the image content, unlike the method
of Van Droogenbroeck and Talbot [1], which uses a histogram
for each pixel of the image. If the histogram update leads to
a new minimum intensity value present in the histogram, this
new minimum is found by a linear search in the histogram. This
is efficient for compact S.E.s on relatively smooth images, but
becomes very computationally expensive for contrast-rich im-
ages, such as noisy images, with thin S.E.s, and with high bit
depths leading to large histogram tables. Our method computes
the minimum of each chord and the minimum of all chords in-
dependent of image content.

Let be a grayscale image and be a (bi-
nary) S.E. Furthermore, let the chord representation of
contain chords with a maximum chord length of .
The construction of the chord representation is done by a
linear scan of and is, thus, . After this, a full
computation of the lookup table is performed once,
which is either for S.E.s with rel-
atively limited variation in chord lengths (such as a square or
the letter H) and otherwise (such as
a circle). Our algorithm performs for each line of the Li-
neErode algorithm and updates the lookup table times.
Updating the table computes only one new line for the buffer
and has, thus, a complexity of either
or similar to the full computation of the table
for . As the LineErode algorithm is , the
computational complexity of the eroding with is depending
on the variation in the chord lengths for either

or ; assuming in both cases that is
significantly larger than .

The memory requirements are determined by the buffer that
is used to store the minimum values, which is either

or .

G. Extensions

So far our discussion has been limited to erosions for 2-D im-
ages with a single S.E. The algorithm for computing dilations
is obtained if we replace all min operators by max operators in
the algorithm. For extension to 3-D images we need to augment
the S.E. with a and , each chord with a -offset, and

Fig. 2. S.E.s used in experiments; shapes shown are 23 and 49 pixels wide.
Black borders were added to these illustrations here for clarity; these borders
were not used in the experiments.

the lookup table need to be replaced by ,
with being the -offset. Otherwise, the extension is straight-
forward.

If we want to perform the same operator with multiple struc-
turing elements using our algorithm a small extra speed gain
can be achieved if we realize that the buffer for the minimum
(or maximum) values can be reused if we compute it for union
of chord lengths present in all the S.E.s we want to use. Below,
we will measure this small gain experimentally.

III. EXPERIMENTS

We compared the computation time of our method (UW) with
an optimized direct implementation, where only the foreground
pixels of the S.E. are considered, and with the algorithm of DT
[1] using rectangular, circular, H-shaped, checkerboard, noise,
and sine-shaped structuring elements on two 8-bit 2160 1440
grayscale images: a natural image and a generated image with
uniformly distributed noise. Examples of these S.E.s are shown
in Fig. 2. All time necessary to compute a morphological oper-
ator (including eventual inverting or transposing the image but
excluding reading and writing images) was considered part of
the computation time of the method. As our and the DT method
are intended as generic algorithms that should perform mor-
phological operators with any arbitrary S.E. efficiently, all ex-
periments discussed below were performed for these two algo-
rithms with the same implementations, optimizations, and set-
tings. Furthermore, no other processing (like transposing the
image) were used. The other methods discussed here are spe-
cialized algorithms for which for example separately optimized
implementations for horizontal and vertical linear S.E.s were
used.

In order to measure the influence of the number of gray levels
on the computation time, 16-bit versions of these two images
were computed by scaling the gray values in both images. In
the figures, DT8 and DT16 refer to respectively the 8-bit and the
16-bit implementation of the algorithm by Van Droogenbroeck
and Talbot.

Figs. 3 and 4 show the computation times of these methods
for a 2.8-GHz Pentium 4 processor based PC, with 1 GB of
RAM. All methods were implemented in ANSI C without mul-
tithreading and compiled using gcc with its O3 optimization
flag set. A thin letter H, rectangular, circular, checkerboard,
noise, and sine-shaped S.E.s of increasing width were used as

URBACH AND WILKINSON: EFFICIENT 2-D GRAYSCALE MORPHOLOGICAL TRANSFORMATIONS 5

Fig. 3. Required computing time for erosions with width l = k. using the naive (Direct), the Van Droogenbroeck–Talbot (DT8 and DT16), and our proposed
(UW) algorithm on a natural image.

Fig. 4. Required computing time for erosions with width l = k, using the naive (direct), the DT (DT8 and DT16), and our proposed (UW) algorithm on a noise
image.

S.E. shapes. The line segments of the H- and sine-shaped S.E.s
were always 1 pixel thick. Note that the influence of image con-

tent (natural versus noise image) on the DT method is absent in
our method.

6 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 1, JANUARY 2008

Fig. 5. Required computing time for multiple erosions with width l = 3; 5; 7; . . . ; k using the DT (DT8 and DT16), and our proposed (UW) algorithm on a
natural image.

Fig. 6. Required computing time for erosions with S.E.s rotated at different angles using the naive (Direct), the DT (DT8 and DT16), and our proposed (UW)
algorithm on a natural image.

TABLE I
COMPUTATION TIME IN SECONDS FOR ERODING A NATURAL AND A NOISE

IMAGE USING A CIRCULAR S.E. OF DIAMETER 49, A 49 � 49 RECTANGULAR

S.E., AND A 1-PIXEL-THICK LETTER H OF WIDTH AND HEIGHT 49

From the figures, it is clear that the proposed method is al-
ways faster than the existing methods. The computation times
for a circular, a rectangular, and a H-shaped S.E. of width 49
is shown in Table I. The computation times of our present al-
gorithm is included for both the integer “UW(int)” and floating
point “UW(float)” version and are compared with our prelimi-
nary version “UW(ICIP)” [18]. As can be seen, our present ver-
sion has a factor 7.7 speed gain over our preliminary version for
an erosion with an H-shaped S.E. of width 49. The computation
time needed by our algorithm is independent of the bit depth
of the image, but when floating point images are used instead of
integer data, the computation time on the natural image with the
same circular S.E. was 0.90 s: a speed penalty of 55% caused by
the computational cost of using floating point operations instead
of their integer versions. The Matlab image processing toolbox
needed 165 s to erode the natural image with a circular S.E. of

width 49 which is even much slower than the 22.43 s of our opti-
mized direct implementation. Experiments have shown that the
computation time of Matlab’s erosion operator for linear S.E.s
increases linearly with the length of the S.E.

As noted in the previous section, when an image is eroded
with multiple S.E.s, our approach provides a way to compute
these in less time than would be required when each of them
would be computed separately. To measure the speed gain of
this strategy [called “UW (multi)”], it was compared in Fig. 5
with the total time needed for computing the same erosions
using the existing [1] (referred to as “DT8” and “DT16”) and
our method [“UW (many)”].

In Fig. 6, the computational cost of erosions with rectangular
and H-shaped S.E.s of width 49 rotated to different orientations
is shown. The variation in computation time can be explained
by the fact that the number of chords and the chord lengths de-
pend on the orientation. The computation time of performing
an erosion with multiple S.E.s consisting of one shape rotated
to many angles is shown in Fig. 7.

Soille et al. [11], [16] have shown how polygonal approxima-
tions of erosions with circular S.E.s can be computed efficiently.
The computation times of their approach, which will refer to
as the Soille algorithm, and our method are shown in Fig. 8.
Surprisingly, even for circles of diameter 100 our method out-
performs Soille’s polygon approximation using 8 linear S.E.s.
Furthermore, if is the diameter of the circle, then the

behavior can be noticed for our method. Note that while

URBACH AND WILKINSON: EFFICIENT 2-D GRAYSCALE MORPHOLOGICAL TRANSFORMATIONS 7

Fig. 7. Required computing time for multiple erosions with S.E.s rotated at k angles using the DT (DT8 and DT16), and our proposed (UW) algorithm on a
natural image.

Fig. 8. Required computing time for erosions with circular S.E.s using polyg-
onal approximations (Soille), openCV, and our proposed (UW) algorithm on the
natural image.

a polygon approximation of a circle was used for Soille’s ap-
proach, a “perfect” digital circle was used for our method. While
we maintained the same number of linear S.E.s for each diam-
eter of the polygonal approximation, one would desire to in-
crease the number of lines as the diameter of the polygon in-
creases, which in turn would increase the computation time of
Soille’s approach. The third method shown in the figure is the
corresponding method from the openCV image processing li-
brary from Intel which is processor optimized. Note that here a
logarithmic scale is used for both axes of the plot.

In Fig. 9, the computation time of our method is compared
for linear S.E.s with the fastest existing algorithm dedicated for
horizontal linear S.E.s by Gil and Kimmel [14]. The time needed
to perform erosions with rectangular S.E.s is also shown. As the
GK approach is to decompose a rectangular S.E. into a hori-
zontal and a vertical linear S.E. we compared this with our pro-
posed method using it both with square S.E.s (“UW 2-D”) and
the same squares decomposed in horizontal and vertical S.E.s
[“UW (decomposed)”]. As is to be expected, our generalized ap-
proach is outperformed by this specialized algorithm, but only
for horizontal and vertical S.E.s longer than, respectively, 31
and 63 pixels. The noticeable jumps in computation times for
our method are caused whenever the number of chord lengths
computed for lookup table is increased due to the increase in the
length of the S.E. Note that this happens whenever the length of
the maximum chord exceeds a new power of two.

Finally, our algorithm showed no change in computing time
between different images of the same size. The apparent dif-
ferences between the plots of the figures are due to different
scales being used due to differences in computing time for the
Droogenbroeck and Talbot algorithm.

IV. CONCLUSION

A new method for computing morphological operations with
arbitrary 2-D flat structuring elements was proposed that is for
S.E.s of width 49 between 2.0 and 7.7 times faster than our pre-
liminary version. It has a computational complexity that is in-
dependent of the number of gray levels in the image. The pro-
posed method has a clear computational performance advantage
over existing methods when S.E.s are used that cannot be easily
decomposed into linear structuring elements. Remarkably, our
method is even faster for erosions with shorter linear S.E.s than
dedicated algorithms (upto a length of 63 pixels for vertical
S.E.s). A further, minor improvement is achieved when multiple
S.E.s are used with a single operator, such as the computation of
granulometries and dilation or erosion scale spaces [19], since
the results of many comparisons are computed once and stored
in an auxiliary array, which can be reused for filtering with all
succeeding S.E.s. Note that for linear S.E.s the opening trees of
Vincent are more suitable [21]

Like the existing method of DT [1] arbitrary S.E.s can be
used. However, our method always outperforms the existing
method, especially when images with higher bit depth, as
common in applications such as medical imaging and as-
tronomy, are used. Besides, our method can handle floating
point images easily, which is impossible in the DT method. The
DT method can, however, be easily adapted to other percentiles,
which is impossible in ours.

Several existing open source and commercial image pro-
cessing software, such as Matlab and openCV, were evaluated
and it was found that most of them are based on a processor-op-
timized version of the naive algorithm. This probably explains
why the old argument of morphological operators being slow
still persists with many people within the image processing
community despite the development of very efficient algorithms
over the years.

8 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 1, JANUARY 2008

Fig. 9. Required computing time for erosions with linear S.E.s using the GK algorithm and our proposed (UW) algorithm on a natural image.

We are currently working on further speed improvements,
such as the inclusion of the algorithm of GK for the computation
of the chords for those cases where that would lead to a speed
gain. Furthermore, we are studying its use for preprocessing 2-D
and 3-D images and the application of template matching using
the hit-or-miss transform with large numbers of S.E.s at many
scales and orientations which can now be computed within prac-
tical time constraints.

REFERENCES

[1] M. Van Droogenbroeck and H. Talbot, “Fast computation of mor-
phological operations with arbitrary structuring elements,” Pattern
Recognit. Lett., vol. 17, pp. 1451–1460, 1996.

[2] J. Serra, Image Analysis and Mathematical Morphology, 2nd ed. New
York: Academic, 1982, vol. 1.

[3] S. Batman and E. R. Dougherty, “Size distributions for multivariate
morphological granulometries: Texture classification and statistical
properties,” Opt. Eng., vol. 36, no. 5, pp. 1518–1529, May 1997.

[4] J. A. Moore, K. A. Pimbblet, and M. J. Drinkwater, “Mathematical
morphology: Star/galaxy differentiation and galaxy morphology
classification,” Publications of the Astronomical Society of Australia,
preprint.

[5] L. J. van Vliet and B. J. Verwer, “A contour processing method for
fast binary neighborhood operations,” Pattern Recognit. Lett., no. 7,
pp. 27–36, Jan. 1988.

[6] L. Ji, J. Piper, and J.-Y. Tang, “Erosion and dilation of binary images by
arbitrary structuring elements using interval coding,” Pattern Recognit.
Lett., vol. 9, no. 3, pp. 201–209, 1989.

[7] L. Vincent, “Morphological transformations of binary images with ar-
bitrary structuring elements,” Signal Process., vol. 22, no. 1, pp. 3–23,
1991.

[8] M. van Herk, “A fast algorithm for local minimum and maximum filters
on rectangular and octagonal kernels,” Pattern Recognit. Lett., vol. 13,
pp. 517–521, 1992.

[9] E.-H. Liang and E. K. Wong, “Hierarchical algorithms for morpholog-
ical image processing,” Pattern Recognit., vol. 26, no. 4, pp. 511–529,
1993.

[10] H. Park and R. T. Chin, “Decomposition of arbitrarily shaped morpho-
logical structuring elements,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 17, no. 1, pp. 2–15, Jan. 1995.

[11] P. Soille, E. Breen, and R. Jones, “Recursive implementation of ero-
sions and dilations along discrete lines at arbitrary angles,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 18, no. 5, pp. 562–567, May 1996.

[12] G. Anelli, A. Broggi, and G. Destri, “Decomposition of arbitrarily
shaped binary morphological structuring elements using genetic
algorithms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 2,
pp. 217–224, Feb. 1998.

[13] N. Nikopoulos and I. Pitas, “A fast implementation of 3-d binary mor-
phological transformations,” IEEE Trans. Image Process., vol. 9, no. 2,
pp. 283–286, Feb. 2000.

[14] J. Gil and R. Kimmel, “Efficient dilation, erosion, opening and closing
algorithms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 12,
pp. 1606–1617, Dec. 2002.

[15] M. Van Droogenbroeck and M. Buckley, “Morphological erosions and
openings: Fast algorithms based on anchors,” J. Math. Imag. Vis., vol.
22, pp. 121–142, 2005.

[16] P. Soille and H. Talbot, “Directional morphological filtering,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 23, no. 11, pp. 1313–1329, Nov.
2001.

[17] J. Darbon, T. Géraud, and A. Duret-Lutz, “Generic implementation
of morphological image operators,” in Proc. Int. Symp. Math. Mor-
phology, 2002, pp. 175–184.

[18] E. R. Urbach and M. H. Wilkinson, “Efficient 2-d grayscale dilations
and erosions with arbitrary flat structuring elements,” in Proc. Int. Conf.
Image Processing, 2006, pp. 1573–1576.

[19] P. T. Jackway and M. Deriche, “Scale-space properties of the mul-
tiscale morphological dilation-erosion,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 18, no. 1, pp. 38–51, Jan. 1996.

[20] A. R. Thompson, J. M. Moran, and G. W. Swenson, Jr., Interferometry
and Synthesis in Radio Astronomy, 2nd Edition, 2nd ed. New York:
Wiley, 2001.

[21] L. Vincent, “Granulometries and opening trees,” Fundam. Inf., vol. 41,
pp. 57–90, 2000.

Erik R. Urbach (S’06–A’07) received the M.Sc.
degree in computer science from the Institute of
Mathematics and Computing Science, University
of Groningen (RUG), Groningen, The Netherlands,
in 2002, where he worked on the connected mor-
phological operators for scale and shape spaces
(C-MOSSS) project for the Ph.D. degree.

He is currently with the Lunar and Planetary In-
stitute, Houston,TX, where he works on developing
methods for identification and characterization of
craters in images of Mars. The prime areas of his

research are connected filters, multiscale and multishape analysis, image
classification, and texture analysis.

Michael H. F. Wilkinson (M’99–SM’06) received
the M.Sc. degree in astronomy from the Kapteyn
Laboratory, University of Groningen (RUG),
Groningen, The Netherlands, in 1993, after which he
worked on the image analysis of intestinal bacteria
at the Department of Medical Microbiology, RUG,
and received the Ph.D. degree from the Institute of
Mathematics and Computing Science (IWI), RUG,
in 1995.

He was appointed as a Researcher at the Centre
for High Performance Computing, RUG, where he

worked on simulating the intestinal microbial ecosystem on parallel computers.
During that time, he edited the book Digital Image Analysis of Microbes (Wiley,
1998) together with F. Schut. After this, he worked as a Researcher at the IWI
on image analysis of diatoms. He is currently an Assistant Professor at the IWI.

